

High Performance Software Defined Radio
(HPSDR)

John Melton

G0ORX/N6LYT

john.d.melton@googlemail.com

What's Is HPSDR All About?

A group of worldwide enthusiasts interested in developing
an open source hardware and software project intended as a
"next generation" Software Defined Radio for use by Radio
Amateurs and Short Wave Listeners.

HPSDR

Who are TAPR?

Tucson Amateur Packet Radio

TAPR is a community that provides leadership and
resources to radio amateurs for the purpose of advancing
the radio art.

For HPSDR they typically help with the development of
the hardware by funding the cost of building Alpha and
Beta boards. They will then make a production run of
some number of boards that they will sell through their web
site to recoup their costs for the development.

HPSDR

TAPR Open Hardware License

The TAPR Open Hardware License ("OHL") provides a
framework for hardware projects that is similar to the one
used for Open Source software.

This isn't as straight-forward as it seems because legal
concepts that work well for software (such as copyright and
copyleft) don't neatly fit when dealing with hardware
products and the documentation used to create them.

Noncommercial OHL restricts use of design for
commercial use.

HPSDR

http://www.opensource.org/
http://www.copyright.gov/circs/circ1.html
http://www.gnu.org/copyleft/

Software Defined Radio (SDR)

An SDR is a communications device where the typical
hardware components such as mixers, filters,
amplifiers, modulators/demodulators, detectors, etc.
are implemented in software.

Such a design produces a radio which can receive
and transmit widely different radio protocols
(sometimes referred to as waveforms) based solely
on the software used.

HPSDR

http://en.wikipedia.org/wiki/Radio

HPSDR

Atlas
(Backplane)

Ozy/Magister/Metis
(I/O)

Mercury (Rx)

Penelope (Tx)

Basic Hardware Components

HPSDR

Firmware Development

Written in VHDL

Quartus II Web Edition FPGA design software

● Free download from Altera (www.altera.com)
– Windows and Linux versions.

module cic(clock, in_strobe, out_strobe, in_data, out_data);
●

● //design parameters
● parameter STAGES = 3;
● parameter DECIMATION = 16;
● parameter IN_WIDTH = 18;
●

● //computed parameters
● //ACC_WIDTH = IN_WIDTH + Ceil(STAGES * Log2(DECIMATION))
● //OUT_WIDTH = IN_WIDTH + Ceil(Log2(DECIMATION) / 2)
● parameter ACC_WIDTH = IN_WIDTH + 12;
● parameter OUT_WIDTH = IN_WIDTH + 2;
●

● input clock;
● input in_strobe;
● output reg out_strobe;
● input signed [IN_WIDTH-1:0] in_data;
● output signed [OUT_WIDTH-1:0] out_data;
●

● //--
● // control
● //--
● reg [15:0] sample_no;
● initial sample_no = 15'd0;
●

●

● always @(posedge clock)
● if (in_strobe)
● begin
● if (sample_no == (DECIMATION-1))
● begin
● sample_no <= 0;
● out_strobe <= 1;
● end
● else
● begin
● sample_no <= sample_no + 8'd1;
● out_strobe <= 0;
● end
● end
●

● else
● out_strobe <= 0;

●

● //--
● // stages
● //--
● wire signed [ACC_WIDTH-1:0] integrator_data [0:STAGES];
● wire signed [ACC_WIDTH-1:0] comb_data [0:STAGES];
●

●

● assign integrator_data[0] = in_data;
● assign comb_data[0] = integrator_data[STAGES];
●

●

● genvar i;
● generate
● for (i=0; i<STAGES; i=i+1)
● begin : cic_stages
●

● cic_integrator #(ACC_WIDTH) cic_integrator_inst(
● .clock(clock),

 .strobe(in_strobe),
● .in_data(integrator_data[i]),
● .out_data(integrator_data[i+1])

);
●

●

● cic_comb #(ACC_WIDTH) cic_comb_inst(
● .clock(clock),
● .strobe(out_strobe),
● .in_data(comb_data[i]),
● .out_data(comb_data[i+1])
●);
● end
● endgenerate
●

●

●

●

●

●

●

● //--
● // output rounding
● //--
● assign out_data = comb_data[STAGES][ACC_WIDTH-1:ACC_WIDTH-OUT_WIDTH] +
● {{(OUT_WIDTH-1){1'b0}}, comb_data[STAGES][ACC_WIDTH-OUT_WIDTH-1]};
●

●

●

●

● endmodule

CIC Filter

HPSDR

Atlas

Passive backplane.

6 DIN connectors.

20 Pin ATX Power
connector.

HPSDR

OZY/Magister

Interface controller.

Cypress FX2 USB
2.0 controller

Altera Cyclone II
FPGA.

Interface for PTT
and CW paddles.

HPSDR

Metis (OzyII)

Interface controller.

10/100/1000
ethernet.

Altera Cyclone III
FPGA.

Interface for PTT
and CW paddles.

HPSDR

HPSDR

HPSDR

Both OZY and Magister can also be configured
to look like a USB-Blaster for loading FPGA
code to Mercury and Penelope.

Mercury

0-65 MHz direct
sampling receiver.

Linear Technology
LTC2208 130MSPS 16-
bit A/D converter.

Altera Cyclone III FPGA.

Digital Down Conversion
to 48K, 96K or 192K.

HPSDR

Mercury Performance

ADC overload: -12dBm (preamp on), +8dBm (preamp off)

MDS (500Hz), 160m - 6m: -138dBm (preamp on), -118dBm
(preamp off)

IP3 equivalent (independent of spacing): +33dBm (preamp on),
>+50dBm (preamp off)

HPSDR

HPSDR

HPSDR

Penelope

½ watt transmitter/exciter
board.

Digital Up Conversion.

Altera Cyclone II FPGA.

Microphone input and A
to D converter.

HPSDR

HPSDR

HPSDR

HPSDR

Penelope
WSPR code available to download to the FPGA that will allow Penelope to
run in a stand alone.

Requires building code with modified call for the user and frequency to
transmit on before downloading to Penelope.

Excalibur

External 10MHz reference clock.
Built in TCXO that is better than the on board

oscillators.
Input for external GPS Disciplined Oscillator.

HPSDR

HPSDR

LPU (Linear Power Supply)

Pennywhistle (16-20 watt PA) Alex (Filters,Ant switch).

Pandora

HPSDR

HPSDR

Hermes

● Single board, Metis, Mercury, Penelope.

HPSDR

HPSDR

Hermes

● Alpha version with filter board (Apollo)

HPSDR

HPSDR

Tayloe Detector (Dan Tayloe)

The switch rotates at the carrier frequency so that each capacitor samples
the signal once each revolution. The 0° and 180° capacitors differentially sum
to provide the in-phase (I) signal and the 90° and 270° capacitors sum to
provide the quadrature (Q) signal.

HPSDR

Mercury Digital Down Conversion

LT2208 ADC sampling at 125MHz
ADC output 0 – 62.5MHz
Decimate by 640
Output = 125MHz/640 = 195ksps (24 bit samples)

HPSDR

Mercury Digital Down Conversion

By decimation we have eased the load on the PC but
increased the complexity of the DDC

But there is an additional advantage of decimation!

Every time we decimate by 2 we increase the output
SNR by 3dB

HPSDR

I and Q signals

I – in-phase
Q – quadrature (delayed by 90 degrees)

Use FFT to convert complex I/Q time domain signal to frequency domain. Each
bin contains spectral density of the signal within that bins bandwidth. If we are
sampling at 48000 samples per second and have 4096 bins for the FFT then each
bin has a bandwidth of 11.71Hz.

Further filtering and processing allows us to demodulate the signals.

Inverse FFT used to convert the frequency domain signal back to time domain

– A Software-Defined Radio for the Masses, Part 1
http://www.flex-radio.com/Data/Doc/qex1.pdf

– Quadrature Signals: Complex, But Not Complicated
http://www.dspguru.com/dsp/tutorials/quadrature-signals

http://www.flex-radio.com/Data/Doc/qex1.pdf

HPSDR

DttSP

Open Source Digital Signal Processing package
developed by Dr.Frank Brickle and Dr. Robert
McGwier (uses FFTW3).

Implements the basic modulation, demodulation,
signal conditioning, and synchronisation processes
required to operate a high performance transceiver
using DSP as the detection and synthesis stages.

Windows Software – FlexRadio PowerSDR

HPSDR

Windows Software – KISS Konsole

HPSDR

Linux Software - ghpsdr

HPSDR

HPSDR Server

I/Q samples

ghpsdr
(RX-0)

RX-0 I/Q

ghpsdr
(RX-n)

RX-n I/Q

...

Commands Commands

RX-0 Buffer RX-n Buffer

TCP connection for Commands
I/Q data sent over UDP

Software Control
& Audio

 USB

HPSDR

USB Output Data Stream

I Q
Tx Audio

Sync Sync Sync C0 C1 C2 C3 C4

USB data is transferred in 512 byte packets.
Always at 48K.

8 bytes of header data (rx freq, tx freq, mox, duplex).

63 Transmit I/Q data and Audio samples.

I and Q samples are 16 bits.
Audio samples are 16 bits.

USB Interface

L R ...

USB I/Q Data Stream

I Q I Q
Rx-0 Rx-n

M

Sync Sync Sync C0 C1 C2 C3 C4

USB data is transferred in 512 byte packets.

8 bytes of header data.

Receiver I/Q data and Mic sample.

...

I and Q samples are 24 bits (3 bytes).
Microphone samples are 16 bits (2 bytes).

● Software

HPSDR

● Software
Bandwidth Requirements

24 bit I samples
24 bit Q samples

 48000 samples per second = 2304000 bits per second
 96000 samples per second = 4608000 bits per second
192000 samples per second = 9216000 bits per second

For just 1 receiver!

8 receivers at 192000 = 73728000 bits per
second

My broadband uplink speed is 360 Kbps

HPSDR

Software

HPSDR

Software

HPSDR

HPSDR Server

USB
I/Q samples

DSP Server
(RX-0)

RX-0 I/Q

ghpsdr
(RX-n)

RX-n I/Q

...

commandscommands

RX 0 Buffer RX n Buffer

Internet
Client

commands Spectrum Data
Audio data

● Software Control
& Audio

HPSDR

● Software

– Bandwidth requirements per receiver

● Spectrum data sent as 8 bit values
● Client requests number of samples - currently 480 at

10 requests per second.

● Audio data sent as 8-bit aLaw at 8000 samples per
second.

● Spectrum data = 480*10*8 = 34800 bits per second
● Audio data =8000*8 = 64000 bits per second

● 98800 bits per second per receiver

HPSDR

Software

Java Applet Client
Runs in any browser window.
Can be run as a standalone application.

HPSDR

Many accesses from around the world to my web page

HPSDR

Software - iPhone client

HPSDR

Software - Android Client
HPSDR

Software - QtRadio
HPSDR

Uses Qt 4 (from Nokia) – multiplatform GUI support

HPSDR
Software – GNU Radio

HPSDR
Software – GNU Radio

Software - QtRadio
HPSDR

Demonstration?

HPSDR References
http://openhpsdr.org

Wiki
Teamspeak
Reflector
Links

Teamspeak recordings
http://www.hamsdr.com/dnld.aspx

http://www.tapr.org

svn://64.245.179.219/svn/repos_sdr_hpsdr/trunk/N6LYT

g0orx.blogspot.com

john.d.melton@googlemail.com

http://openhpsdr.org/
http://www.tapr.org/
mailto:john.d.melton@googlemail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

