
Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Practical System-on-Chip

OSHUG #17: 29 March 2012
Julius Baxter, Jeremy Bennett, opencores.org

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Overview

● Introduction
● Systems On A Chip, IP cores, HDL,

Implementation technologies (FPGA)
● OpenCores & OpenRISC Project
● Using ORPSoC
● Compiling software for OpenRISC bare

metal

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

System On A Chip

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

System on a Chip (SoC)

● Integrate many functions onto
a single silicon die

● Result of increased IC
consolidation

● Enabled by improvements in
VLSI process

● Modern high-end SoCs
integrate:
● µ/DSP/graphics processors
● Memory controllers

● DRAM, flash

● Communications
● USB, ethernet, i2c

● Bespoke processing, I/O Image source: http://spectrum.ieee.org/semiconductors/design/crossroads-for-mixedsignal-chips

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Chip Implementation
Process

● ASIC: Application-
Specific Integrated
Circuit

● Modern process for
purely digital ASICs (no
major analog circuitry on
chip) relatively straight
forward

● Most chip design houses
are fabless – they do not
own and operate own
manufacturing facility

Sources: http://www.geek.com/images/procspecs/p4/p4-13wafer.jpg
http://www.cadence.com/products/di/soc_encounter/pages/default.aspx

http://www.cadence.com/products/di/soc_encounter/pages/default.aspx

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Fabless ASIC
Development Process

Project
Selection/Specification

Design implementation, verification.
RTL description in synthesisable HDL

Determine implementation based on
divide-and-conquer approach.

Emphasis on re-use of existing IP or
most efficient development stratergy

Process into manufacturable format.
RTL -> gatelevel netlist ->

EDA tool vendor-specific database
for many and varied processing stages

Generate final layout, transfer to fab.
Usually GDSII format (largely just planar

geometric shapes and metadata)
Source: http://freecode.com/projects/socgds

?

Develop or buy IP?

Source: http://www.ipod.org.uk/reality/reality_universe_computer.asp

A digital design engineer hard at work,
overlooked by expectant management

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

FPGA Development
Process, In Comparison

Design implementation, verification.
RTL description in synthesisable HDL

Process into manufacturable format.
RTL -> gatelevel netlist ->

EDA tool vendor-specific database
for many and varied processing stages

Generate final layout, transfer to fab.
Usually GDSII format (largely just planar

geometric shapes and metadata)

Process into FPGA configuration file.
RTL -> FPGA netlist ->

FPGA bitstream

Program/Configure FPGA
Download generated bitstream

ASIC FPGAFront-end

Back-end

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

IP Cores in SoCs

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

System Design with IP
cores

● Decide on function and
rough breakdown of how to
achieve that

● Select units of
semiconductor intellectual
property (IP cores) for the
job at hand

?

Develop or buy IP?

IP cores are units intended to provide a specific functionality and:
● usually provide a control mechanism via a standardised protocol

(typically over a memory-mapped bus)
● are delivered in an electronic format (normally files with

hardware description language, or HDL, code) which can be built
and tested with the rest of the system

● are ultimately synthesised (combined) into the overall chip
design so become part of the whole chip

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

IP Cores

● IP core design houses
aim to design IP for
maximum reuse (an
industry mantra) this
means:
● Very configurable (heavy

use of parameterised
options)

● Try to be application-
generic

● Along with reuse and
configurability are
requirements for:
● a demonstrably verified

and 'proven' design
(bugs causing a re-fab
can cost $10k->$1M+)

● Maximum area and
power efficiency

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Modern Implementations

● Typically µ-processor
based, with on-chip
communication done via
internal bus

● Highly configurable

µ-processor
Bus master

memory
Bus slave

0x0000-0xf000

DSP
Logic

Bus slave
0xf000-0xf100

I/O controller
Bus slave

0xf100-0xf200

bus
arbiter

memory
Bus slave

0x0000-0xf000

Non-volatile
memory
Bus slave

0xfc00-0xff00

● Many on-chip bus
standards:

● Wishbone

● ARM AMBA

● OCP

● IBM CoreConnect

● A growing number of
network-on-chip (NoC)
interconnects, too

µ-processor
Bus master

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

SoC Interconnect

● The SoC
interconnect is
what ties the IP
blocks together

● Usually a memory-
mapped bus
providing access to
control registers
and memories

Source: http://www.design-reuse.com/articles/14612/future-trends-in-soc-interconnect.html

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

SoC Development
Summary

● A large part of SoC design
work is combination and
verification (testing) of a set
of IP
● Confirm it's implementable
● Confirm it works in your

particular configuration
● Confirm it has sufficient

capacity for the intended
application

Source: http://www.eurekatech.com/

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Describing The Hardware

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Describing the design

● IP blocks for
implementation in
modern digital VLSI
process are usually
designed using a
hardware description
language
● VHDL
● Verilog
● SystemVerilog

increasingly

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Hardware Description
Languages

● Crucially allow the
description of
● Synchronous

elements
● Combinatorial

logic

● Synchronous elements
such as registers (flip-flops)
store the state of the
incoming signal based on
the rising/falling of the
clock

● Combinatorial elements
comprise the logical
functions between
synchronous elements

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

A synchronous element in
Verilog

D Q

clock

Logic A Logic B

rising edge

falling edge

t (period), freq = 1/t

D-type flip-flop

wire logic_a_output; /* assigned elsewhere */
wire logic_b_input;
reg q;

always @(posedge clock)
 q <= logic_a_output; /* the 'D' input */

assign logic_b_input = q;

● Always sampling on each rising
edge of the clock, output to 'D'
after a short time afterward, valid
until next rising clock edge

● The simplest memory element,
also considered a 1-cycle delay

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Combinatorial logic in
Verilog

● Essentially any logic, arithmetic, conditional
operator

assign d = !(a | b);

assign e = b & c;

assign q = d | e;

Assign f = e ? a : q;

F

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Verilog HDL

● Provides ways of
describing the
propagation of
time and signal
dependencies
(sensitivity)

● Block-based
structure

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Verilog Module
Instantiations

● As design for re-use is
emphasised, modular
design is important.

● Abstraction and
organisation is achieved
by organising smaller,
repeatable parts of a
design into modules,
much like functions in any
other language

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Levels of Abstraction

● Verilog could be used to
describe a design at a low or
high level of abstraction

● An example of quite low level
Verilog is a gatelevel netlist
which describes each and
every atomic cell and their
interconnections in a design

● Higher level design is
achieved through the use
of Verilog's arithmetic
operators which can infer
rather complex logic
(multipliers, adders) or
case statements on wide
busses which can also infer
large amounts of logic
(multiplexors)

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Register Transfer Level

● Most common level at which
design is described is the register
transfer level (RTL)

● Synthesisable Verilog is
commonly referred to as RTL

● RTL? A description of the values
signals should take on when the
clock, or other signals, change
their values

● Synchronous, or clock-based
behaviour, results in flip-
flops/registers being used to
implement the design

● Combinatorial logic, or descriptions
of logical functions, are
implemented in fundamental logic
components in hardware (not, and,
or, xor etc.)

D QLogic A D QLogic B Logic C

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Implementation

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Getting the design onto
the silicon

● Code in a
synthesisable
subset of the
language
supported by the
synthesis tool in
use

● You are ultimately
intending to implement
your logic with a
particular technology

● Technology in this case is
used to refer to the ASIC
process or FPGA which
will have the design 'put
on it' – each provide a
library of cells which can
be used to implement
the design

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

FPGA Technology

● Field Programmable Gate
Array

● An array of multi-purpose
logic which can be
configured to create
(within reason) arbitrary
logical functions and
interconnections between
them

● American FPGA
vendor Xilinx uses
thousands of lookup
tables (LUTs) which
have signals routed
through to emulate
the logic functions
the designer
describes in the HDL

Source: http://www-2.cs.cmu.edu/~tom7/fpga/fpga-preview.gif

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

FPGAs

● FPGAs contain arrays
of the bread-and-
butter of digital logic
(combinatorial and
sequential logic
elements in the LUTs)
as well as:
● Routing interconnect
● RAMs
● I/O hardware
● Clock generation

● They are reconfigurable so
can be applied for a wide
variety of designs

● Have area, power,
operating frequency
disadvantages when
compared to ASIC

● Often used for ASIC
prototyping

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

FPGAs

● Are now big
enough to
implement
systems-on-chip
(consiting of
processor,
memory, I/O,
accelerators)
capable of running
Linux distros

● How do we get
from Verilog to an
FPGA configuration
file?

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

HDL Synthesis

● Each ASIC process,
FPGA generation
and family provide
implementation
components in the
way of gates and
macro cells (RAMs,
adders, multipliers)

● The synthesis tool
must be aware of this
and optimise and map
the design described
in the HDL to the
targeted technology

● The synthesised
design is described in
the synthesisable
subset of the HDL

 Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

SoC design with HDL
source

● The technology an
IP block will be
used on is
determined by SoC
designers

● IP designers don't
know this and
must design
accordingly

● IP blocks have a lot of
'tunability' for synthesis
(removing unwanted or
unnecessary or
unimplementable features.)
● Verilog has a preprocessor,

so features can be selected
with a set of defines,
equivalent to C #defines

● Verilog parameters are
similar and are a 'compile-
time' (synthesis-time)
option

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

Open Source Digital Design

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

OpenCores and OpenRISC

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

32

Overview of OpenCores

Founded by
Damjan Lampret

1999 2007 2011

OpenRISC 1000
developed

OpenRISC 1000
commercial deployment

Primary support Flextronics Owned by ORSoC AB

147,001 registered users reported as
of 28 March 2012

919 projects as of 28 March 2012

Web: www.opencores.org and
www.openrisc.net

IRC: freenode.net, channel #opencores

http://www.opencores.org/

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

33

The OpenRISC 1000
Project

● Objective to develop a family of open source RISC designs
● 32 and 64-bit architectures
● floating point support
● vector operation support

● Key features
● fully free and open source
● linear address space
● register-to-register ALU operations
● two addressing modes
● delayed branches
● Harvard or Stanford memory MMU/cache architecture
● fast context switch

● Looks rather like MIPS or DLX

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

34

The OpenRISC 1200

OpenRISC 1200

Power
Mgmt

Debug
Unit

Tick
Timer

PIC

CPU

Inst
MMU

Inst
Cache

Data
MMU

Data
Cache

J
T
A
G

W
i
s
h
B
o
n
e

W
i
s
h
B
o
n
e

ALU

● 32-bit Harvard RISC architecture

● MIPS/DLX like instruction set

● first in OpenRISC 1000 family

● originally developed 1999-2001

● Open source under the

● GNU Lesser General Public License

● allows reuse as a component

● Configurable design

● caches and MMUs optional

● core instruction set

● Source code Verilog 2001

● approx 32k lines of code

● Full GNU tool chain and Linux port

● various RTOS ported as well

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

35

ORPSoC

ORPSoC: OpenRISC Reference
Platform System-on-Chip

OR1200

● Combined reference
implementation and board
adaptations

● Reference implementation –
minimal SoC for processor testing,
development

● compilable into cycle-accurate model

● Boards ports target multiple
technologies

● Lowers barrier to entry for
OpenRISC-based SoC design

● Push-button compile flow

● Largely utilises open-source EDA tools

Clock, Reset
management

Memory
Controller

UART

Wish-
bone
Bus

Arbiter

Peripheral A
SoC

Debug
Interface JTAG

TAP

JTAG

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

36

Hardware Development

● Objective is to use an open source EDA tool chain
● back end tools for FGPA all proprietary

– free (as in beer) versions available

● front end tools now have open source alternatives
● OpenRISC 1000 simulation models

● Or1ksim: golden reference ISS
– C/SystemC interpreting ISS, 2-5 MIPS

● Verilator cycle accurate model from the Verilog RTL
– 130kHz in C++ or SystemC

● Icarus Verilog event driven simulation
– 1.4kHz, 50x slower than commercial alternatives

● All OpenRISC 1000 simulation models suitable for SW use
● all support GDB debug interface

The OpenRISC 1000 Tool Chain

The Software Tool Chain

● A standard GNU tool chain
● binutils 2.20.1
● gcc 4.5.1
● gdb 7.3 (for BCS use only!)
● C and C++ language support

● Library support
● static libraries only
● newlib 1.18.0 for bare metal (or32-elf-*)
● uClibc 0.9.32 for Linux applications (or32-linux-*)

● Testing
● regression tested using Or1ksim (both tool chains)
● or32-linux-* regression tested on hardware
● or32-elf-* regression tested on a Verilator model

Board and OS Support

● Boards with BSP implementations
● Or1ksim
● Xilinx ML501, Terasic Altera DE-2, DE0-nano, ...

● RTOS support
● FreeRTOS, RTEMS and eCos all ported

● Linux support
● adopted into Linux 3.1 kernel mainline
● some limitations (kernel debug, ptrace)
● BusyBox as application environment

● Debug interfaces
● JTAG for bare metal
● gdbserver over Ethernet for Linux applications

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

40

Software Development
Remote Connection to GDB

GDB
RSP

Server
I/F

TCP/IP

RSP

USB JTAG

(gdb) target remote :51000(gdb) target remote :51000

GDB RSP
Server

TCP/IP

RSP

SystemC

I/F

SystemC
Model

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

41

Building the Tool Chain

● Download the source:

svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/or1ksim
svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/gnu-src
cd gnu-src; git clone git://git.openrisc.net/jonas/uClibc; cd ..
cd gnu-src; git clone git://git.openrisc.net/jonas/linux; cd ..

● Build and install Or1ksim

cd or1ksim; mkdir bd; cd bd
../configure --target=or32-elf32 --prefix=/opt/or1ksim-new
make; make install; make pdf; cd ../..

● Build and install the tool chains into /opt/or32-new

cd gnu-src
./bld-all.sh --force --prefix /opt/or32-new \
 --or1ksim-dir /opt/or1ksim-new \
 --uclibc-dir uClibc --linux-dir linux
export PATH=$PATH:/opt/or1ksim-new:/opt/or32-new/bin

● You can then use the tools to build BusyBox and Linux

● see http://opencores.org/or1k/OR1K:Community_Portal

http://opencores.org/ocsvn/openrisc/openrisc/trunk/or1ksim
http://opencores.org/ocsvn/openrisc/openrisc/trunk/gnu-src
http://opencores.org/or1k/OR1K:Community_Portal

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

42

The Future of OpenRISC

● Stefan Wallentowitz at TUM
● multicore version of OpenRISC 1200
● student working on LLVM

● Pete Gavin
● bringing the GNU tool chain up to date

● Ruben Diez
● automated nightly builds
● common test platform for models and HW

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

43

ORPSoC
OpenRISC Reference Platform System-on-Chip

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

44

Two Sides Of ORPSoC

● “Reference build”
● Processor testing

platform
● Not technology

targeted
● Can build fast

cycle-accurate
model

● “Board builds”
● Targeted at

particular FPGA
boards

● Live in own sub-
project

● Intended to provide
“push-button”
synthesis flows

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

45

Intended Audience And
Uses Of ORPSoC

● Provides framework for users to experience
digital design and, hopefully, get commodity
FPGA development boards running an open
source system
● FPGA majors provide non-free (libre and beer) SoC

implementations :(
● Potential uses are numerous but use cases for

bespoke processing or I/O are common
● Develop an IP for SHA256/DSP/motor control and

instantiate multiple on FPGA along with OR1200
running Linux, connected via ethernet

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

46

ORPSoC Reference Build

ORPSoC Reference
Design

OR1200

Clock, RST
control

Memory
Controller

UART

Insn.
Bus

Interrupt
Generator

SoC
Debug

Interface JTAG
TAP

JTAG

BootROM

32-bit
Data
Bus

8-bit
Data
Bus

● Simplest useful
system for
processor
verification
● “On-chip” memory
● Debug interface

– Can master bus
● UART
● Interrupt generator

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

47

Using ORPSoC

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

48

Running the reference
design

● Can execute a basic test, running the CPU
through bootup, into a main() loop and
immediately exiting

orpsocv2$ cd sim/run
run$ make rtl-test TEST=or1200-simple VCD=1

● The VCD=1 will create a dump of the
internal signals which can be viewed in a
waveform viewer such as GTKWave

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

49

GTKWave viewing or1200-
simple.vcd

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

50

ORPSoC software

● Running a test will cause software to be
built. This includes:
● A simple C library containing basically rand() and

printf()
● Low-level CPU functions for features like

interrupts and timers
● The boot code (OR1K assembly, crt0.S)
● Some application code

● It is all compiled and converted into
appropriate format for loading into sim.

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

51

ORPSoC simulation
directories

● All sims launched from
sim/run but output
generated in sim/out

● Some intermediate files
generated in sim/run

● VCD in sim/out
● Memory image of program

we executed was in
sim/run/sram.vmem
(symlink to it)

sim$ tree -L 2
.
├── bin
│ ├── definesgen.inc
│ ├── Makefile
│ └── refdesign-or1ksim.cfg
├── out
│ ├── or1200-simple-executed.log
│ ├── or1200-simple-general.log
│ ├── or1200-simple-lookup.log
│ ├── or1200-simple-sprs.log
│ ├── or1200-simple.vcd
│ └── vvp.log
└── run
 ├── icarus.scr
 ├── Makefile
 ├── sram.vmem →
../../sw/tests/or1200/sim/or1200-
simple.vmem
 ├── test-defines.v
 └── vlogsim.elf

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

52

ORPSoC Board Ports

● A sub-project of
ORPSoC intended
to be built and run
on a specific FPGA
system

● Contained under
boards/ directory,
then sorted by
FPGA vendor

boards$ tree -L 2
.
├── actel
│ ├── backend
│ └── ordb1a3pe1500
├── README
└── xilinx
 ├── atlys
 ├── backend
 ├── ml501
 └── s3adsp1800

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

53

Adapting ORPSoC

● Inherent modularity
of SoC designs
makes it relatively
straight forward to
add or remove
features

● Removing features
is usually as simple
as commenting out
a `define

...
`define JTAG_DEBUG
// `define RAM_WB
// `define XILINX_SSRAM
 `define CFI_FLASH
 `define XILINX_DDR2
 `define UART0
 `define GPIO0
// `define SPI0
 `define I2C0
 `define I2C1
 `define ETH0
 `define ETH0_PHY_RST
...

A defines file in
boards/xilinx/ml501/rtl/verilog/include/orpsoc-defines.v

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

54

Configuring IP Cores

● IP blocks usually have own
configuration information

● A Verilog `defines header is
usually used to store config
● Parameters on the

instantiations are preferred as
it allows multiple instances
with differing configurations

…
// Do not implement Data cache
//`define OR1200_NO_DC

// Do not implement Insn cache
//`define OR1200_NO_IC

// Do not implement Data MMU
//`define OR1200_NO_DMMU

// Do not implement Insn MMU
//`define OR1200_NO_IMMU

// Size/type of insn/data cache if implemented
// (consider available FPGA memory resources)
//`define OR1200_IC_1W_16KB
`define OR1200_IC_1W_32KB
//`define OR1200_DC_1W_16KB
`define OR1200_DC_1W_32KB

// Implement optional l.div/l.divu instructions
// By default divide instructions are not implemented
// to save area.
`define OR1200_DIV_IMPLEMENTED
...

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

55

Adding new cores is a
little more involved

● Instantiate the core
in top-level

● Attach to bus
● Provide some

software
(driver/test)

● Attach I/O (if any)
● Add constraints to

back-end scripts

ORPSoC OR1200

clk/rst

Memory
Controller

UART

Insn.
Bus

Interrupt
Generator

SoC
Debug

InterfaceJTAG
TAP

BootROM

32-bit
Data
Bus

8-bit
Data
Bus

orpsoc_top

YOUR
CORE

DMA

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

56

Adapting ORPSoC for new
boards

● Be aware of FPGA
technology (family,
variant) and
whether existing
clocking and
memory
components can be
used

● Ensure new pin
mapping applied
(which signals
from ORPSoC go to
which pins on the
device/board)

● Check design fits
on device (quick
synthesis check)

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

57

Debug infrastructure on
boards

● Two debug options
● “Mohor” SoC debug IF
● Advanced debug IF

● Both use JTAG physical
layer
● Mohor adds own JTAG

TAP and needs 4 extra
pins

● adv_debug_if can use
FPGA's TAP and save pins

● Be sure to
determine debug
solution!

Diagram of Mohor Debug Interface
Connecting to ORPSoC

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

58

ORPSoC synthesis flow

● Example flow
based on Xilinx
tools

Verilog Source

xst
(Xilinx Synthesis Tool)

Constrains File (.xcf)
Project file (.prj)

Commands (.xst)

NGC

NGD

Constrains File (.ucf)

ngdbuild

Mapped NCD

map

Place And Route (par)

PAR'ed NCD

bitgen
(programming file generation)

FPGA configuration
file (binary bitsream)

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

59

Compiling Software For The Bare Metal

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

60

Tool chain

● GNU tool chain for
both bare metal
and Linux
userspace
programs

● Bare metal tol
chain relies on
newlib for its C
library

● Newlib's libgloss
handles low level
interaction
(supposed to
implement syscall
support.)

● OR1K libgloss is
designed for bare
metal usage

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

61

Adding new port to or32
libgloss

● A single object file
must be compiled
which contains
some symbols
defining, eg.
● Clock frequency of

design
● UART address on

bus

cat gnu-src/newlib-1.18.0/libgloss/or32/ml501.S
/*
 * Define symbols to be used during startup -
 * file is linked at compile time
 *
 */
.global _board_mem_base
.global _board_mem_size
.global _board_clk_freq

_board_mem_base: .long0x0
_board_mem_size: .long0x800000

_board_clk_freq: .long66666666

/* Peripheral information - Set base to 0 if not present*/
.global _board_uart_base
.global _board_uart_baud
.global _board_uart_IRQ

_board_uart_base: .long0x90000000
_board_uart_baud: .long115200
_board_uart_IRQ: .long2

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

62

Compiling with new board
library

● Once the file is
compiled with the
correct values, it
should be archived
and placed along
side the rest of the
newlib board
support files:

● The
-mboard=boardna
me switch can be
now passed to the
compiler and
software should
initialise correctly
for the board

●$TOOLCHDIR/or32-elf/lib/boards/<boardname>/libboard.a

Copyright © 2012 Julius Baxter and Jeremy Bennett.
Freely available under a Creative Commons license

63

Run “helloworld” in the
simulator

● Create a basic
helloworld C file:

● Run it in or1ksim

#include <stdio.h>
int main(void)
{
 printf(“Hello world!\n”);
 return 0;
}

● Compile it:

or32-elf-gcc hello.c -o hello

$ or32-elf-sim -m8M hello

Seeding random generator with value ...
Or1ksim 2012-03-23
Building automata... done
...
Section: .jcr, vaddr: 0x000089bc,...
Section: .data, vaddr: 0x000089c0, ...
Hello world!
exit(0)
@reset : cycles 0, insn #0
@exit : cycles 3692, insn #2842
 diff : cycles 3692, insn #2842

● Note: GCC defaults to use
the”or1ksim” board

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

